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ABSTRACT
We present the rationale, design, and implementation of Relaxed
MultiJava (RMJ), a backward-compatible extension of Java that
allows programmers to add new methods to existing classes and to
write multimethods. Previous languages supporting these forms of
extensibility either restrict their usage to a limited set of
programming idioms that can be modularly typechecked (and
modularly compiled) or simply forego modular typechecking
altogether. In contrast, RMJ supports the new language features in
a virtually unrestricted form while still providing mostly-modular
static typechecking and fully-modular compilation. In some cases,
the RMJ compiler will warn that the potential for a type error
exists, but it will still complete compilation. In those cases, a
custom class loader transparently performs load-time checking to
verify that the potential error is never realized. RMJ’s compiler and
custom loader cooperate to keep load-time checking costs low. We
report on qualitative and quantitative experience with our
implementation of RMJ.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features — classes and objects; D.3.4 [Programming
Languages]: Processors — compilers.

General Terms

Algorithms, Design, Languages

Keywords

Relaxed MultiJava, external methods, multimethods, modular
typechecking, class loader

1. INTRODUCTION
The design of a programming language must balance several
competing goals. One important goal is the ability to organize
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software into separate modules, each of which can be reasoned
about (e.g. typechecked and compiled) separately from the
implementations of other modules. This kind of modular checking
allows software components to be developed and checked for
correctness once and then reliably reused in many future contexts.

Another important goal is the ability to easily extend existing
software with new capabilities, without requiring the existing
software to be modified. Standard object-oriented languages gain
great expressive power by allowing a class to be defined as an
extension (i.e., a subclass) of an existing class, without modifying
the existing class or any of its clients. More advanced object-
oriented languages, including Common Lisp [46, 42], Dylan [44],
Cecil [13, 14], AspectJ [26], and Hyper/J [24, 41], support several
additional forms of extensibility, such as the ability to add new
methods to existing classes, add statements before or after existing
methods, add new superclasses to existing classes, and/or write
methods that dynamically dispatch on the run-time classes of their
arguments (which is a kind of extension to those argument
classes).

Unfortunately, modular reasoning is in conflict with flexible
extensibility. In general, the more a module can be extended from
the outside, the fewer properties can be proven about the module
separately from those extensions. For example, traditional
statically typed object-oriented languages check that each
operation is properly implemented on a class-by-class basis. This
checking ensures that dispatch errors such as “message not
understood” and “message ambiguous” can never occur on
message sends at run time. But if new methods can be added to
existing classes in an unrestricted manner, then it is easy to
introduce message dispatch errors that elude modular detection
[34].

Because of these conflicts, each language design represents a
particular tradeoff between the amount of extensibility allowed and
the amount of modular typechecking supported. Most existing
languages have been biased toward one or the other extreme. For
example, standard object-oriented languages support modular
class-by-class typechecking but only support subclassing-based
extensibility. At the opposite end of the spectrum, the advanced
languages listed earlier support several additional kinds of
extensibility. However, the cost of this greater extensibility has
been a loss of modular static reasoning; these languages require
whole-program information to perform typechecking (if they
support static typechecking at all) and perhaps to perform
compilation as well.

In previous work with other colleagues, we developed MultiJava
[18, 17, 36], an extension to Java [4, 22] that augments Java’s
subclassing-based extensibility with the ability to add methods
(called external methods) to existing classes (called open classes
[15]) and the ability to write methods (called multimethods) that



can dispatch on argument classes in addition to the receiver class.
MultiJava supports these additional features while retaining Java’s
modular typechecking and compilation schemes. To do so,
MultiJava restricts the ways in which the new language features
may be used to a particular set of extensibility idioms that are
compatible with modular checking.

As a consequence of MultiJava’s insistence on fully modular
typechecking, there are several useful forms of extensibility that
are simply disallowed. For example, MultiJava requires all
external method declarations that belong to the same operation to
be written in a single file. This is because, given a strictly modular
view, it would not otherwise be possible to guarantee the absence
of duplicate or ambiguous external method declarations for that
operation. Because there is the potential for an ambiguity given
only partial program information, MultiJava conservatively rejects
“free-standing” external method declarations. However, it is also
possible that free-standing external methods are completely safe,
and in practice there are programming situations that need them.
For example, a client of two independently developed libraries
may need to provide implementations of operations defined in one
library for concrete classes defined in the other library; in other
words, the client needs to “complete the diamond” set up by the
two independent extensions, as illustrated in Figure 1. We
sometimes refer to free-standing methods as “glue methods,” since
they serve to combine two separate libraries. Even if the
programmer ensures that glue methods do not cause ambiguities,
MultiJava will still reject this programming idiom.

In this paper we present the design and implementation of Relaxed
MultiJava (RMJ). Like MultiJava, RMJ augments Java with
external methods and multimethods, and it provides modular
typechecking and compilation. At the same time, RMJ supports
nearly arbitrary usage of the new features. These properties are
achieved by giving programmers explicit control over the tradeoff
between extensibility and modular reasoning, instead of having the
language legislate one or the other extreme.

The key technical principle underlying RMJ’s design is to treat the
modular detection of the potential for a message dispatch error as
producing merely a compile-time warning. For any operation
flagged at modular compile time as potentially incompletely or

ambiguously implemented, the programmer can choose to resolve
the problem and acquire a guarantee of modular type safety.
Alternatively, the programmer can retain the extra expressiveness
that triggered the warning. In that case, the operation will undergo
more checking at load time, to ensure that the operation is in fact
properly implemented. We employ a custom class loader to
perform this load-time checking. RMJ’s strategy allows the
expression of many more idioms than are expressible in MultiJava,
but it still ensures that (a) all message dispatch errors are detected
no later than load time, and (b) the programmer is always aware at
modular compile time of the potential for any load-time errors.
MultiJava’s type system falls out as a special case of RMJ,
corresponding to a scenario in which all compile-time message
dispatch warnings are treated as errors by the programmer.

RMJ has the following novel collection of characteristics:

• RMJ is strictly more expressive than MultiJava, which in turn
is strictly more expressive than Java. Aside from a few
compilation challenges discussed later, RMJ allows arbitrary
usage of external methods and multimethods.

• RMJ provides the same modular static assurances as
MultiJava, because RMJ modularly and statically identifies
and reports to the programmer the same problems as
MultiJava. If MultiJava would report no errors to the
programmer, then RMJ will report no errors to the
programmer, and no errors can occur, even at load time. But
where MultiJava would reject a program, RMJ might instead
warn of a potential problem, allowing the programmer to take
responsibility for avoiding it.

• For each compile-time warning, the RMJ class loader will
check at class load time whether the potential error actually
occurs for the program being linked. This check can be viewed
as a natural augmentation of the normal class verification
check in the standard Java class loader. If a class or external
method loads successfully, then there can be no message
dispatching errors involving that class or method. Such load-
time checking is qualitatively better than run-time checking of
each message send, even when (as in Java’s case) class loading
can occur at run time. Run-time checking can never prove that
some future message send won’t fail, whereas load-time
checking guarantees that, for those classes that are loaded,
there cannot be any message send, on any future execution
path, that fails.

• RMJ’s load-time checking typically occurs incrementally as a
program runs, because of Java’s lazy class loading style, with
the exact set of loaded classes possibly dependent on program
inputs. Load-time checking therefore guarantees the type
safety of a particular set of loaded classes, but it may miss
classes that can be loaded on other program runs. RMJ also
includes a preloader tool that statically checks an application
for load-time errors in all statically reachable classes. In this
way, the preloader provides assurances of type safety no matter
what subset of the statically reachable classes are actually
loaded when the application is later run.

• As with Java and MultiJava, RMJ source code is compiled into
standard Java class files modularly, one file at a time.
Therefore, RMJ source and compiled files interoperate
seamlessly with Java source and compiled files.

• RMJ’s compiler and class loader collaborate to make the
necessary load-time checking efficient, incremental, and
mostly a “pay-as-you-go” proposition.

An implementation of RMJ is freely available for download and
experimentation [36].
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The next section presents the design of the RMJ language. Section
3 describes our implementation strategy, including compiler
support and the structure of the RMJ class loader. Section 4
assesses our work, presenting the results of some qualitative
experience using the language and quantitative performance
experiments. Section 5 describes previous work on increasing the
modular extensibility of traditional object-oriented languages.
Section 6 concludes with a discussion of future work.

2. LANGUAGE DESIGN

This section informally describes the RMJ language, which
extends MultiJava’s support for expressing external methods and
multimethods in Java. Both RMJ and MultiJava are explicitly
designed to extend Java as little as possible, to make it easier for
programmers to learn and adopt the new features. However, these
syntactically small extensions offer significant new abilities to
programmers. (More complete descriptions of the MultiJava
language can be found elsewhere [18, 17].)

Throughout this section we will use a running example, inspired
by an example due to Krishnamurthi [28]. Imagine that one author
develops an abstract Shape class, and two independent developers
each provide concrete implementations for Rectangle and
Circle, as shown in Figure 2. The draw method relies on the
abstract OutputDevice class in the OutputPackage package
(not shown).

2.1 Operations and Message Dispatch

Before illustrating RMJ’s features, we describe a view of Java’s
methods and dispatch semantics that generalizes naturally to the
RMJ setting. It is useful to consider the methods in a Java program
to be implicitly partitioned into a set of operations (sometimes
referred to as generic functions [35, 7, 42]). Each operation is a
collection of methods that have the same name and type signature.
A method that does not override any other method introduces a
new operation, and all methods that override that introducing
method belong to its operation. For example, the draw method in
Shape of Figure 2 introduces an operation, and the other two
draw methods in the figure also belong to it.

Each syntactic call site s in a program invokes a single operation’s
methods. The mapping from s to its associated operation o is
determined statically, based on the static types of the receiver and
other arguments to the call. When a message send occurs at s
dynamically, the unique most-specific applicable method
belonging to o is chosen. A method is applicable to the message
send if the class of the actual receiver is either the method’s
receiver class or some subclass. The unique most-specific
applicable method is the single applicable method that overrides
all other applicable methods.

If there were no static typechecking, two kinds of message
dispatch errors would be possible dynamically. If a message send
had no applicable methods, then a "message not understood" error
would occur. If a message send had several applicable methods but
no single most-specific one, then a "message ambiguous" error
would occur. Java’s static typechecking guarantees that these
errors can never occur by ensuring that each operation is properly
implemented: it has a unique most-specific applicable method for
every possible type-correct concrete receiver. For example, a static
error would be signaled if Rectangle’s draw method in Figure
2 were removed, as that omission could cause a run-time “message
not understood” error to occur.

2.2 External Methods

RMJ and MultiJava allow new methods to be added to existing
classes from the outside. For example, if a client of the Shape
library wishes to view Shapes as providing an area operation,
the client can program such an extended view of Shapes by
writing a new file containing one or more external method
declarations for area, as shown in the top of Figure 3. In this
example, the client knows about the Rectangle and Circle
subclasses of Shape and provides appropriate area methods for
them, along with a default method that handles any other Shape
subclasses that might exist.

We call the area operation external because its introducing
method is external. In RMJ and MultiJava, external operations are
scoped. To use the new area operation, client code must import
it, just as classes are imported. For example, the second import
declaration at the bottom of Figure 3 provides AreaUser access
to the area operation. Once imported, area is treated just like
any other operation on Shapes. As shown in the figure, area can
be invoked using Java’s normal message-send syntax; there is no
distinction to clients between the "original" operations of Shape
(like draw) and the externally added ones (like area). Methods
of external operations can also be overridden in subclasses, like
other methods. For example, in Figure 4 the Triangle subclass
of Shape includes an overriding implementation of area as a
regular method inside its class declaration.

package ShapePackage;

import OutputPackage.*;

public abstract class Shape {

... generic operations on shapes ...

public abstract void draw(OutputDevice d);

}

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Rectangle ...

}

}

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Circle ...

}

}

Figure 2: Shape and two implementations



The ability to add methods to existing classes is a powerful and
recurring idiom. The visitor design pattern [21] was developed in
part to overcome the inability of existing mainstream languages to
add new “visiting” operations to existing classes. The separation of
code into multiple, orthogonal concerns, as in role-based
programming [3, 47, 45], subject-oriented programming [24, 41],
and aspect-oriented programming [27, 26], is also dependent on
the ability to organize methods not by class but by concern, and
then to add these methods to the underlying classes from the
outside. Even when it would be possible to put all methods into
their class, such as when developing an application from scratch, it
may still be desirable to modularize some of the source code by
operation.

A key strength of MultiJava is that each of the files in Figures 2-4
can be typechecked modularly, given access only to the visible
classes and external operations, which are those that are referenced
by a given file. For example, the area methods in Figure 3 are
typechecked in the context of the classes in Figure 2, but without

access to Triangle (which may not even have been written yet).
If typechecking passes on each file, then every operation in the
program is guaranteed to be properly implemented, so run-time
message dispatch errors will not occur. In order to make this strong
guarantee, MultiJava imposes significant limitations on the kinds
of external methods that can be written. RMJ provides the same
modular checking as MultiJava but does not impose the associated
limitations, instead transparently providing additional load-time
safety checks as necessary. The following subsections describe two
extensions that RMJ makes to MultiJava’s external methods.

2.2.1 Abstract External Methods

It is natural to allow external methods of abstract classes to be
abstract. For example, it may be desirable to declare Shape’s
area method abstract; Figure 5 illustrates how this is
programmed in RMJ. Abstract external methods allow the
programmer to document the requirement that all concrete
subclasses should provide an appropriate area implementation.

However, it is difficult to preserve fully modular typechecking in
the face of abstract external methods. For example, suppose the
Triangle class of Figure 4 did not import area nor include an
overriding area method. If the version of the area operation in
Figure 5 is used, we will get a “message not understood” error at
run time if area is ever invoked on a Triangle. Since neither
Triangle nor area is visible to the other, modular
typechecking is not able to detect this error.

MultiJava addresses this problem by simply disallowing abstract
external methods, thereby ensuring that each external operation
has a default method implementation. Unfortunately, a reasonable
default implementation of an operation does not always exist.
Unless the set of operations available on Shape is very rich, it is
unlikely that any useful area default implementation can be
written. Therefore the default implementation’s body will probably
be forced to simply throw an exception. Such a default
implementation satisfies MultiJava’s modular typechecker, but
only by creating the potential for a run-time error which is not
much different than the “message not understood” error that the
default implementation is written to prevent! (MultiJava’s
approach works well for operations where overriding methods
merely provide more efficient or customized implementations of a
default algorithm, such as the union of two sets, but not for
operations where the overriding methods define the appropriate
behavior of the operation for each subclass.)

In contrast, RMJ allows abstract external methods to be written,
signaling only compile-time warnings rather than compile-time
errors. When the file containing the area methods in Figure 5 is
compiled, the programmer will be issued a warning about the
potential for area to be incompletely implemented, but the file

package AreaPackage;

import ShapePackage.*;
import RectanglePackage.*;
import CirclePackage.*;

public double Shape.area() {
... default implementation ...

}

public double Rectangle.area() {
return width() * height();

}

public double Circle.area() {
return Math.PI * radius() * radius();

}

package AreaUserPackage;

import ShapePackage.*;

import AreaPackage.area;

public class AreaUser {

public void usesArea(Shape s) {
double d = s.area();
...

}

}

Figure 3: External area methods and a sample client

package TrianglePackage;

import ShapePackage.*;
import OutputPackage.*;

import AreaPackage.area;

public class Triangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Triangle ...

}

public double area() {
return base() * height() / 2;

}

}

Figure 4: Subclass area method

package AreaPackage;

import ShapePackage.*;
import RectanglePackage.*;
import CirclePackage.*;

public abstract double Shape.area();

public double Rectangle.area() {
return width() * height();

}

public double Circle.area() {
return Math.PI * radius() * radius();

}

Figure 5: Abstract external methods in RMJ



will be compiled successfully. As long as all concrete subclasses of
Shape loaded into the program define or inherit a concrete
implementation of area, the program will be correct and the
potential for area to be incomplete will not have been realized.
However, if a concrete subclass of Shape is loaded that does not
override the abstract area method declaration, then a load-time
verification error will be reported. RMJ’s combination of compile-
time and load-time checking is sufficient to ensure that all
operations are properly implemented. Therefore, a program that
passes RMJ’s compile-time and load-time checks will never
generate any dispatching errors when messages are sent at run
time.

2.2.2 Glue Methods

Suppose again that the area and triangle libraries are two
independent augmentations to the original shape hierarchy, so that
the Triangle class wouldn’t know about the area operation
and wouldn’t have an area method inside it. As described above,
if both the area operation in Figure 5 and the revised Triangle
class are loaded into the same RMJ program, a load-time error will
be triggered. To resolve this problem, the integrator of the two
independently developed libraries must be able to provide
additional “glue” code that makes the libraries work together, i.e.,
that “completes the diamond” as illustrated in Figure 1. For
example, Figure 6 shows a new file that defines the external
method enabling the area operation of Figure 5 to interoperate
with Triangle, without modifying either library (or
retypechecking either library or even having source access to either
library).

We refer to the area method in Figure 6 as a glue method,
because it glues together an existing class with an existing
operation. More precisely, a glue method is an external method
that does not reside in the same file that introduces the method’s
associated operation. The area method in Figure 6 is a glue
method because it belongs to the operation that was introduced in
Figure 5.1

Unfortunately, it is difficult with a purely modular view to ensure
that there are not any duplications or ambiguities between the glue
method in Figure 6 and the other methods in the area operation.
For example, although the glue method in Figure 6 is not
ambiguous with the area methods in Figure 5, if an unseen file
contains another area glue method for Triangle, at run time a
“message ambiguous” error will occur when area is invoked on a
Triangle instance. Because of these kinds of problems,
MultiJava does not allow glue methods to be written. It instead
requires all the external methods for a particular operation to be
written in the file that introduces the operation, allowing an
operation’s external methods to be typechecked as a unit, thereby
preserving modular typechecking.

In contrast, RMJ allows glue methods to be written but issues a
compile-time warning that there is the potential for duplicate or
ambiguous methods to appear in other files. RMJ will still compile
the glue methods successfully. The class loader will then verify as
glue methods are loaded that there are no duplicates or
ambiguities.

An unusual issue in the design of glue methods is the need to
determine how they interact with Java’s lazy loading capabilities.
A class is typically loaded in Java implementations upon first
reference (e.g., when an instance is created). Similarly, in RMJ and
MultiJava, an external operation is loaded simply by referencing it
by name (e.g., in a message send to that operation). Referencing an
external operation has the effect of loading the operation’s
introducing method, as well as all overriding methods declared in
the same file. However, RMJ’s glue methods are written separately
from their operations, so they will never be loaded by this scheme.
Furthermore, individual methods are never named directly in
programs: a method is always invoked indirectly via message
sends to its associated operation.

To address this problem, our custom class loader accepts a list of
the names of files containing glue methods to be included in a
given program. Before loading the program’s first class (the one
containing the main method), the class loader records the
existence of each glue method, but it does not load any glue
methods. Each glue method will be loaded as soon as it is
reachable, meaning that the method’s operation, receiver, and
argument types have all been loaded. This mechanism for finding
glue methods is somewhat analogous to Java’s existing mechanism
for finding classes, which relies on the classpath list provided to
the class loader.

Our strategy of loading a glue method only when it is reachable
ensures that the method is not loaded until it is capable of being
invoked, in keeping with Java’s lazy loading scheme. At the same
time, the strategy still maintains a kind of monotonicity in the
meaning of operations: the method chosen by invoking an
operation with a given receiver and arguments cannot change
during the course of a program’s execution, even if new methods
are added to the operation through later loading. Implementation
details of our strategy for loading glue methods are provided in
Section 3.

While RMJ supports glue methods belonging to external
operations like area, it currently does not support glue methods
belonging to regular “internal” operations like draw. Glue
methods for external operations allow us to integrate separately
developed class hierarchies and external operations, which was our
goal. However, supporting glue methods on internal operations
would enable additional kinds of useful expressiveness,
particularly in the presence of multimethods (described in Section
2.3). Unfortunately, it is challenging to modularly compile glue
methods belonging to internal operations in a way that is efficient
and that interoperates seamlessly with existing Java source and
compiled files. We leave this to future work.

2.3 Multimethods

RMJ and MultiJava also extend Java by allowing message dispatch
to depend upon the run-time classes of the arguments of the
message in addition to the receiver; this is called multiple
dispatching (as opposed to the single dispatching of traditional
receiver-based method lookup). To exploit multiple dispatching, a
(possibly external) method can add a specializer to one or more of
its arguments, which restricts the method to only apply to message
sends whose arguments are instances of the specializing classes (or

1. Even if area had a default implementation, as in Figure 3, glue
methods would still be useful, allowing clients to customize the
integration of the area and triangle libraries.

package TriangleAndAreaGluePackage;

import TrianglePackage.*;
import AreaPackage.area;

public double Triangle.area() {
return base() * height() / 2;

}

Figure 6: Glue external methods in RMJ



their subclasses); methods with argument specializers are called
multimethods.

For example, consider the draw operation for Shapes in Figure
2. It may be useful to have special drawing functionality for
particular kinds of output devices. Figure 7 shows revised
Rectangle and Circle classes, each with a new multimethod
for drawing on black-and-white printers. To specify a specializer, a
formal argument is declared using the syntax
StaticType@SpecializerClass FormalName. In the
Rectangle class, the second draw method is applicable only if
the dynamic class of the receiver is Rectangle (or a subclass)
and the dynamic class of the argument is BWPrinter (or a
subclass). The static argument types of a method identify to which
operation the method belongs, allowing multimethods to smoothly
interact with Java’s static overloading mechanism.

As illustrated at the bottom of Figure 7, operations containing
multimethods are invoked using Java’s regular message-send
syntax. At run time, the unique most-specific applicable method is
invoked, as described in Section 2.1. In the presence of
multimethods, a method m overrides a method n if m’s receiver is

n’s receiver or a subclass, and for each argument position i, m’s ith
specializer is n’s ith specializer or a subclass. In our example, if
draw is sent to a Rectangle and a BWPrinter, then both
Rectangle draw methods are applicable and the second one is
chosen, since the methods have the same receiver but the second’s
argument specializer is more specific (an unspecialized argument
is equivalent to one specialized on the static type). Sending the
draw message to a Rectangle and a ColorPrinter,
however, will invoke the first Rectangle draw method, since
the second one is not applicable.

In addition to operations like draw, multimethods are natural for
binary operations like equality, addition, and set union, which
accept two arguments of the same type. Multimethods allow the
arguments of a binary operation to be treated symmetrically and
allow algorithm selection to be sensitive to the representations of
both arguments. We have also found multimethods to be quite
useful in event-based systems, where components register
themselves to be notified when an event occurs. Notification
consists of the invocation of a component’s handleEvent
operation, passing the event as an argument. To define how events
are dispatched, a component defines some number of
handleEvent multimethods, each of which specializes its event
argument to the particular subclass of event to be handled.

As with external methods, MultiJava is able to modularly
typecheck and compile files containing multimethods. If
typechecks succeed on all files, then MultiJava guarantees that
each operation is properly implemented. In the context of
multimethod dispatch, this means that the operation has a unique
most-specific applicable method for every possible type-correct
tuple consisting of a concrete receiver and concrete arguments. As
with external methods, however, MultiJava imposes restrictions on
how multimethods are written to ensure this ability to check
multimethods modularly. Each concrete class is required to define
or inherit a singly dispatched implementation of each operation
that it supports. For example, in the Rectangle class in Figure 7,
the first draw method, which doesn’t specialize on its argument, is
required. If it were omitted, MultiJava would issue a compile-time
error, because draw could be incompletely implemented if there
exist output devices other than BWPrinter, for example
ColorPrinter. Unfortunately, as with the earlier area
operation, it may be difficult to write a default implementation of
the draw operation that does not simply throw an exception.

RMJ treats the absence of singly dispatched default methods as a
compile-time warning rather than a compile-time error. In our
example, the default draw methods in Rectangle and Circle
can be omitted, leaving only the draw multimethods, as in Figure
8. When each of the Rectangle and Circle files is compiled,
as long as draw is implemented for all visible concrete subclasses
of OutputDevice, the RMJ compiler will issue only a warning
that there is the potential for draw to be incompletely
implemented, but the file will be compiled successfully. If
BWPrinter and its subclasses are the only concrete kinds of
output devices loaded into the program, the program will be
correct and the potential for an incomplete implementation will not
be realized. However, if a different concrete subclass of
OutputDevice is loaded, then a load-time verification error will
be reported. As before, RMJ’s combination of compile-time and
load-time checking is sufficient to ensure that all operations are
properly implemented. Therefore, a program that passes RMJ’s
compile-time and load-time checks will never generate any
dispatching errors when messages are sent at run time.

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Rectangle ...

}

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Rect. on a b&w printer ...
}

}

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Circle ...

}

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Circle on a b&w printer ...
}

}

package DrawUserPackage;

import ShapePackage.*;
import OutputPackage.*;

public class DrawUser {

public void usesDraw(Shape s) {
OutputDevice od = ...;
s.draw(od);

}

}

Figure 7: draw multimethods and a sample client



The current RMJ implementation does not support the omission of
singly dispatched default methods for internal operations like
draw. This idiom has not been necessary for our case studies, but
it could become useful when RMJ supports glue methods for
internal operations. In that case, glue methods could be used to fill
the “gaps” caused by the lack of singly dispatched default
methods, without modifying existing code.

2.4 Dispatching on Interfaces

It is common practice for a third-party library to expose only
interfaces to clients, rather than the classes implementing those
interfaces. In order for clients to write multimethods that dispatch
on such library classes, it is necessary to allow interfaces as
specializers. However, this idiom poses a challenge for modular
typechecking, because interfaces support multiple inheritance: two
multimethods whose arguments specialize on different interfaces
may appear to be unambiguous at modular compile time but cause
a run-time “message ambiguous” error if an unseen class
implements both interfaces [34].

MultiJava handles this modularity problem by simply disallowing
interface specializers. For example, if the various output devices in
OutputPackage were defined as interfaces rather than classes,
then the second draw method in Rectangle and the second
draw method in Circle of Figure 7 would be disallowed. In
contrast, RMJ allows arbitrary usage of interface specializers, but
it issues a compile-time warning about the potential for multiple-
inheritance ambiguities and performs load-time ambiguity
checking to ensure that the potential ambiguities never occur in
practice.

Because RMJ allows interface specializers, it makes sense to also
allow external methods on interfaces. Such methods are useful for
the same reasons that interface specializers are useful. For
example, if the shapes in ShapePackage were exported as
interfaces, then external methods on interfaces would be required
to implement the area functionality in Figure 3. As expected,
external methods on interfaces in RMJ lead to compile-time

warnings about potential ambiguities, backed up by load-time
checking to ensure safety.

2.5 Discussion

In RMJ we have identified those restrictions of MultiJava that
reflect only the potential for a message dispatch error and replaced
them with warnings. RMJ still reports all actual and potential
errors as each file is modularly compiled. This contrasts with other
systems that have comparable support for external methods or
multimethods, which require whole-program information in order
to typecheck and/or compile a file. For example, a class in AspectJ
[26] may be typechecked and compiled only when given all of the
aspects that add external methods (among other things) to the
class. RMJ’s modular checking is particularly important when
compiling library files whose clients are not yet known.

External methods and multimethods are the realization in the Java
context of a single underlying idiom: the ability to write methods
that dynamically dispatch on existing classes. External methods
can dispatch on an existing receiver class, and multimethods can
dispatch on existing argument specializer classes. With these two
constructs, RMJ allows essentially arbitrary expression of this
underlying idiom. Methods can be written and organized in any
grouping desired. Those organizations that satisfy MultiJava’s
modular typechecking restrictions are proven safe entirely
modularly. The remainder must be confirmed with a load-time
check, but in many cases, the only feasible alternatives to load-
time checking are methods that simply throw run-time exceptions.

RMJ’s type system can be viewed as a variant of the soft typing
approach [11], but with load-time checks instead of run-time
checks. Soft typing systems attempt to perform as much static
checking as possible on programs written in a dynamically typed
language like Scheme. Our work takes the opposite perspective:
we relax a language that supports modular static typechecking to
allow more expressiveness, inserting load-time checks where
needed to ensure safety. RMJ can serve as a general platform for
experimenting with modular type systems for languages with
external methods and multimethods. Different modular type
systems can be evaluated without changing the underlying
expressiveness of the language. Rather, what changes is simply the
factoring of the checks between compile time and load time.

RMJ’s approach is orthogonal to the particular details of external
methods and multimethods. The factoring of checks between
modular compile time and load time would be equally useful for
other kinds of expressive languages that pose a challenge for
modular typechecking. Obvious candidates are aspect-oriented and
related languages, which typically forego modular guarantees in
favor of increased expressiveness. Using RMJ’s approach, these
languages can retain their current expressiveness while still
providing as much early feedback as possible to users. More early
feedback can be incorporated as new research identifies
opportunities for better modular reasoning in these languages.

3. COMPILATION AND CLASS LOADING
RMJ source code compiles into regular Java bytecode classes,
which are loaded by a custom class loader running on a standard
Java virtual machine. This section explains how bytecode for RMJ
is generated, loaded, and verified. We begin by briefly reviewing
how MultiJava’s language extensions are compiled, then explain
the additional compilation techniques used for RMJ, and finally
describe RMJ’s custom class loader. A key feature of our
compilation strategy is that the custom class loader only performs

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Rect. on a b&w printer ...
}

}

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Circle on a b&w printer ...
}

}

Figure 8: draw multimethods in RMJ



extra checking on an operation if the compiler was forced to emit a
warning message about potential incompleteness or ambiguity
problems for that operation. If the compiler can verify the
correctness of all classes modularly, then the custom class loader
will perform no load-time checking.

3.1 Compile-Time Extensions in MultiJava

RMJ is able to reuse most of the compilation techniques of
MultiJava. To implement multiple dispatching, MultiJava merges
all the methods that have the same receiver class but different
argument class specializers into a single bytecode method. This
method consists of an if statement that uses a series of
instanceof tests to dispatch to the right branch, each of which
contains the body of one of the original multimethods. Clients
continue to invoke operations containing multimethods in exactly
the same way as before, thereby shielding clients from whether or
not some operation has multimethods. This design also allows a
MultiJava class to extend a regular Java class and override a
regular Java method with a MultiJava multimethod, all
transparently to the Java class and its existing Java clients.

To implement external operations, MultiJava generates an anchor
class representing the operation. The external methods declared in
the file that introduces the external operation are merged into a
single bytecode method named apply, in which the original
receiver has been converted into an additional argument. This
apply method selects the right branch using a series of
instanceof tests of the original receiver plus any other
arguments with specializer classes.

As shown in Figure 4, subclasses of the receiver of an external
operation can import the operation and then add additional
methods to it. To allow an external operation to be extended by
later classes in this way, the apply bytecode method for the group
of methods on an external operation from a single source file is put
in a dispatcher class; the external operation’s anchor class then
maintains a linked list of dispatcher class instances, in order of
most specific to least specific. If a subclass adds one or more new
methods to an existing external operation, the subclass methods
are compiled into an apply method in their own dispatcher class,
which is added to the front of the anchor class’s dispatcher list as
part of the subclass’s static initialization code.

For example, consider the area external operation defined in
Figure 3. The operation gets its own anchor class, and the three
methods are merged into an apply method in a new dispatcher
class. When Triangle of Figure 4 is compiled, a dispatcher
class for its area method is created as well. When Triangle is
initialized, its static initialization code adds this dispatcher to the
front of the anchor class’s dispatcher list, resulting in the structure
illustrated in Figure 9. When area is invoked, the head of the
anchor class’s list of dispatchers is fetched, and its apply method
is invoked. If none of the methods of the head dispatcher is
applicable, then the apply method fetches the next dispatcher in
the chain and invokes its apply method recursively. Eventually,

an applicable method will be found, because modular static
typechecking has verified that the operation is completely
implemented.2

More details on the implementation techniques of MultiJava are
available in earlier papers [18, 17].

3.2 Compile-Time Extensions in RMJ

The RMJ compiler has two code-generation tasks beyond what the
MultiJava compiler does. First, the RMJ compiler must generate
appropriate bytecode for the additional features not supported by
MultiJava. Second, the RMJ compiler must record information in
the resulting class files to tell the RMJ class loader what checks to
perform when each class is loaded. This information is conveyed
through the extensible annotation mechanism supported by Java’s
class file format [Lindholm & Yellin 97].

3.2.1 Compiling RMJ Extensions

RMJ allows the method introducing an external operation to be
abstract, as illustrated in Figure 5. Bytecode generation for abstract
methods is simple: the abstract method is treated as if it has a body
that simply throws a RuntimeException. A similar technique
can be used to generate code when a concrete class lacks a singly
dispatched method for some operation, as illustrated in Figure 8.
Bytecode for the implicit abstract method can be generated, with a
body that throws a RuntimeException.

RMJ allows the receiver or an argument specializer of a method to
be an interface. Bytecode generation is unaffected by this
relaxation of MultiJava, since the existing strategy of testing for a
method’s applicability using instanceof tests works for
interfaces as well as classes.

Finally, RMJ allows a method to be declared in a separate file from
both its receiver class and its (external) operation. We compile
each such glue method into an apply method in its own
dispatcher class; this enables each glue method to be loaded
separately by the RMJ class loader, as it becomes reachable. A
source file containing several glue methods is itself compiled into a
glue anchor class akin to an external operation’s anchor class. The
glue anchor class is used to provide annotations to the class loader
about the new glue methods, as described below.

In RMJ, it is possible for glue methods to override some existing
methods and to be overridden by other existing methods. For
example, suppose C is a subclass of B, which is a subclass of A. An
external operation could initially declare methods for receivers A

Figure 9: Structure of the implementation of area from Figures 3 and 4

anchor for area

function field

dispatcher for original area methods

apply method

dispatcher for area on Triangle

apply method

next_function field

2. This “chain of responsibility” [21] style works correctly and can
be generated completely modularly and statically, but it is not as
efficient as regular method invocation in Java. An alternative
strategy worth investigating in the future would generate a more
efficient custom dispatcher method at load time, based on the
current set of loaded dispatchers. One version of this strategy is
used in the implementation of the Runabout [23], a variation on
the visitor design pattern.



and C in one file, with a later glue method implementing the
operation for B. The MultiJava implementation would merge the
external methods for A and C, which were declared in the same
file, into a single dispatcher class with a single apply method.
However, this strategy would not allow “insertion” of methods,
like that for B, into the middle of the specificity order. To resolve
this problem, RMJ compiles each method of an external operation
into its own dispatcher class with its own apply method. In this
way, all methods of external operations are treated as if they were
glue methods, for the purposes of compilation. This does have the
side-effect of slowing down dispatch of external operations
somewhat, as shown in Section 4.2.

3.2.2 Bytecode Annotations

The compiler must inform the class loader whenever load-time
completeness or ambiguity checking is required for an operation.
The compiler must additionally provide the loader with
information about the methods declared on that operation, to
enable the checking to be performed. Both of these tasks are
accomplished via method annotations. The RMJ compiler
produces a method annotation for each source method that belongs
to an external operation. Each method annotation indicates the
operation that the method is part of, the receiver and argument
specializers (if any), the fully qualified names of its anchor and
dispatcher classes, and whether or not the method is abstract. The
annotation for a method declared in the file introducing the
method’s external operation (e.g., an area method in Figure 3) is
placed in the operation’s anchor class bytecode. The annotation for
an internal method added to an external operation (e.g., the area
method in Figure 4) is placed in the bytecode for the new method’s
receiver. Finally, the annotation for a glue method (e.g., the area
method in Figure 6) is placed in the associated glue anchor class
bytecode.

Method annotations provide enough information for the loader to
perform the necessary checking on external operations. For
example, if a method annotation for an abstract external method is
observed, then the loader will know to perform completeness
checking. This checking relies on the other method annotations of
the operation being checked, to decide whether the operation is
fully implemented. Similarly, the appearance of a method
annotation for a glue method or a method that specializes on an
interface indicates that the associated operation requires ambiguity
checking.

Method annotations are also generated for methods of regular
internal operations, in order for the loader to check their
completeness and ambiguity if necessary. It would be sufficient to
generate an annotation for each method in the program, but this
would be a large number of annotations. Worse, it wouldn’t allow
existing class files compiled by a regular Java compiler to be used
seamlessly (e.g., subclassed from) in RMJ programs.

Fortunately, the RMJ compiler can safely generate annotations for
methods of internal operations on demand. First, if a concrete class
adds multimethods to an internal operation but does not declare or
inherit a singly dispatched method for that operation, the compiler
generates a method annotation for the implicit abstract singly
dispatched method, in addition to the annotations for each of the
multimethods. These annotations are sufficient for the loader to
safely and precisely check completeness.

Second, the RMJ compiler must generate annotations to allow
ambiguity checking of an internal operation containing a method
that specializes on an interface. When such a method is observed,
method annotations are created for it and for all other methods on

its operation declared in the current class. For proper ambiguity
checking of the operation, annotations are also needed for all
methods of the operation in any subclasses and superclasses of the
current class. Therefore, the existence of the method specializing
on an interface triggers the compiler to generate appropriate
method annotations in each subclass when it is compiled.
However, the superclasses have already been compiled, so they
will in general not contain such annotations. Instead, we include
the annotations for superclass methods in the bytecode for the first
subclass that defines a method specializing on an interface. In this
way, we generate the proper method annotations to enable load-
time ambiguity checking, without either requiring existing code to
be recompiled or generating method annotations for operations
that do not require load-time checking.

3.3 Load-Time Extensions in RMJ

RMJ uses a custom class loader, named RMJClassLoader, that
subclasses Java’s standard ClassLoader class, to load the
classes used in an RMJ program. This class loader observes each
class loaded into the program and examines it for RMJ method
annotations.

The RMJ class loader is invoked in the following manner:
% java -Drmj.glue=<glue> RMJClassLoader

<Main> <args>

As described earlier, the class loader accepts a list of the glue files
to be included in the current program; this is set via the
rmj.glue property. Glue methods are processed in two phases:
the first phase registers the existence of a glue method, and the
second phase loads the glue method’s dispatcher class and checks
for duplicate or ambiguously defined glue methods. The loader
performs the first phase immediately, using the method annotations
in the files named in the rmj.glue property. Each glue method is
not actually loaded until it becomes reachable: its operation’s
anchor class, receiver, and argument specializers have been loaded.
This strategy ensures that each glue method is only loaded if
necessary and that it gets inserted in the appropriate place in the
chain of dispatchers. Details on registering and loading glue
methods are provided in Section 3.3.2.

Once all the glue is registered, the loader starts the RMJ program
by loading the <Main> class and invoking its main method with
the given <args>. RMJClassLoader will be the defining class
loader [30] for <Main>, which means that any classes referenced
from that class will also be loaded with RMJClassLoader,
transitively.

The key method of RMJClassLoader is loadClass, which
takes the fully qualified name of a class to load, finds the bytecode
implementation of the class, performs necessary RMJ checks on
the class, and creates and returns the Class object representing
the loaded class. (This same process applies to interfaces as well.
From the perspective of the virtual machine, interfaces are simply
a special kind of abstract class. We adopt this perspective
throughout the rest of this section, referring to both classes and
interfaces generically as classes.) The overall procedure of
RMJClassLoader’s loadClass method is sketched in Figure
10.

RMJClassLoader cannot be the defining loader for system
classes, or else the classes will not be able to be passed to system
methods. In the current implementation of RMJClassLoader,
any class in the java package is loaded by the regular system
class loader. Otherwise, we use the normal Java mechanisms to
find the class and install it in the JVM using the inherited



defineClass method, with RMJClassLoader as the
defining loader. The boldface operations in the loadClass
method support RMJ’s load-time checking and are described in the
rest of this section.

Java’s custom class loader mechanisms have enabled us to include
additional load-time checking in the Java virtual machine.
However, custom class loaders were intended to support multiple
namespaces, not as a way for language designers to implement
language extensions [10], and they do not gracefully support all
that we and other language designers might like. For example,
custom class loaders for different extensions cannot be composed
nicely. We view the design of a more flexible mechanism in Java
for composable load-time checkers and code transformers to be an
interesting area for future work.

3.3.1 Registering Classes

In order to perform completeness and ambiguity checking
incrementally as classes are loaded, the loader maintains a number
of data structures, which are described as needed in this section.
The registerClass method updates these data structures
appropriately whenever a new class is loaded. Aside from
registering the existence of the new class, registerClass also
reads any method annotations in the class and updates the data
structures to reflect their existence.

The RMJ class loader will not be the defining class loader for a
system class. Consequently, classes referenced by the system class,
such as its ancestor classes, may not be observed by the RMJ class
loader. To partially account for this omission, the
registerSuperclasses method calls registerClass on
each of a system class’s superclasses, allowing the RMJ class
loader’s data structures to reflect their existence. However, it is still
possible for some relevant system classes to be missed, which can
cause the loader to perform fewer checks than necessary to ensure
correctness. An improved composable class loader mechanism
would provide a way for custom class loaders to at least observe
that these internal system classes have been loaded.

3.3.2 Registering and Loading Methods of External
Operations

As mentioned above, the RMJ class loader examines each file
listed in the rmj.glue property for method annotations and

registers any that are found. Registration consists in the creation of
an external method descriptor for each method, which includes the
fully qualified names of the external method’s anchor class,
dispatcher class, receiver class, and argument specializer classes
(or static types for arguments that are unspecialized). As
mentioned earlier, all methods of external operations are treated as
if they were glue methods for the purposes of compilation.
Therefore, when registerClass finds an annotation in a
newly loaded class for a method added to an external operation
(either a method in the file introducing the operation or a method
in a subclass of the operation’s receiver), the method is registered
exactly as glue methods are registered.

Methods of external operations will not be loaded until they are
reachable. Therefore, the loader maintains an external method
registry, which maps not-yet-loaded anchor, receiver, and
argument specializer class names to the external method
descriptors that are awaiting their loading. As part of a method’s
registration, the registry is updated to reflect the classes upon
which the new method is waiting. Finally, to speed external
method loading (described next), each external method descriptor
also stores a count of the number of distinct not-yet-loaded classes
that it is waiting on. For example, when the glue method in Figure
6 is registered via the rmj.glue property, it initially is waiting
for the area operation’s anchor class and the Triangle class.
The external method registry is therefore updated to reflect these
dependencies, and the method’s descriptor gets a count of two.

The registerClass method, described earlier, is responsible
for updating the external method registry to reflect the loading of a
new class. That is, any mappings from the new class’s name in the
registry are removed, and the mapped-to external method
descriptors have their counts decremented. The
loadReachableMethods operation then loads any method
that has now become reachable, i.e., whose associated descriptor’s
count is zero. Multiple methods of an external operation can
become reachable simultaneously. In that case,
loadReachableMethods loads the dispatcher classes of less-
specific external methods and prepends them to the operation’s
dispatcher chain before those of more-specific external methods, to
ensure that overriding methods always end up in front of their
overridden methods on the chain.

3.3.3 Verifying Completeness

The verifyCompleteness method is used to ensure that
operations remain complete in the face of abstract external
methods and concrete classes that implicitly contain abstract
singly dispatched methods. The loader must ensure that, for each
such abstract method, for each type-correct tuple of concrete
receiver and argument classes, the abstract method is overridden
by some loaded concrete method that is applicable to the tuple. To
reduce the load-time work that is performed, only tuples consisting
of top concrete classes of the abstract method’s receiver and
argument types need be considered. A concrete class C is a top
concrete class of an abstract class D if there is no other concrete
class E that is a superclass of C and a subclass of D.3 If an
operation has an incompleteness, it will be revealed by a tuple of
top concrete classes. By similar reasoning, only top concrete
methods of the abstract method need to be considered for
applicability to these tuples. A top concrete method is a concrete
method that directly overrides the abstract method, without any
intervening overriding concrete methods.

Class loadClass(String fullName) {

Class c;
if (fullName.startsWith("java.")) {
c = findSystemClass(fullName);

registerSuperclasses(c);

} else {
String fileName = asFileName(fullName);
URL url = getResource(fileName);
byte[] bytes = ..read contents of url..;

c = defineClass(bytes);
}

registerClass(c);

loadReachableMethods(c);

verifyCompleteness(c);

return c;

}

Figure 10: RMJClassLoader’s loadClass method

3. Recall that throughout this subsection we are treating interfaces
as special kinds of abstract classes.



Completeness checking in verifyCompleteness uses an
incremental algorithm that works as each abstract method
annotation and concrete class is loaded, without any redundant
checking. When a new abstract method is loaded that needs
completeness checking, the loader constructs all the type-correct
tuples of top concrete classes, based on the set of classes currently
loaded, and checks that each has an applicable loaded method that
overrides the abstract method. Conversely, when a new concrete
class C is loaded, the loader finds all loaded abstract methods that
need completeness checking and have a receiver or argument type
for which C is a top concrete class. For each such abstract method,
the loader constructs all tuples of top concrete classes that contain
C in some position and ensures that each has an applicable loaded
method that overrides the abstract method.

For example, suppose the area methods in Figure 5 are loaded in
an RMJ program. Assuming the Shape, Rectangle, and
Circle classes have already been loaded,
verifyCompleteness will check for the existence of area
methods applicable to Rectangle and Circle, as each is a top
concrete class of Shape. The method annotations in the area
operation’s anchor class allow this checking to succeed. When the
Triangle class is later loaded, verifyCompleteness will
check for the existence of an area method applicable to
Triangle. If there is a subclass area method for Triangle,
as in Figure 4, or a glue method for Triangle, as in Figure 6, it
will have already been loaded by loadReachableMethods
and will therefore be properly accounted for.

Our incremental completeness algorithm resembles the Rapid
Type Analysis algorithm [5]. Both algorithms maintain
information about a set of reachable classes and a set of reachable
operations. Whenever either set is extended, the new element is
checked against all the existing elements of the other set. The
algorithm is guaranteed at every point in time to have checked all
pairs in the cartesian product of the two sets, without any
redundant checking.

The class loader maintains several data structures to make the
checking of verifyCompleteness efficient. They are updated
incrementally by registerClass as each class is loaded. The
data structures are as follows:

• a mapping from each loaded abstract class to its set of loaded
top concrete subclasses,

• a mapping from each loaded abstract method needing
completeness checking to its set of top concrete methods,

• a mapping from each loaded abstract class C to the set of
abstract methods for which that class is the receiver or an
argument type.

For maximum flexibility, our verifyCompleteness
implementation treats a completeness error as a non-fatal warning,
and still allows the program to continue execution. If the
incompleteness ever actually occurs at run time, then the exception
that was compiled as the body of the abstract method will be
thrown. It would be straightforward to parameterize the loader to
allow users to specify different ways of treating load-time errors.

3.3.4 Verifying Unambiguity

As with completeness checking, the loader performs ambiguity
checking on an operation incrementally, as each class and
reachable method is loaded. The heart of the loader’s algorithm for
incremental ambiguity checking is a routine that checks a pair of
methods for ambiguity with one another. This algorithm can be
used equally well to perform ambiguity checking at compile time,

on the visible methods of an operation [29]. First, the receiver and
argument specializers (or static argument types, where
unspecialized) (C1,...,Cn) and (D1,...,Dn) for each of the two
methods are retrieved. For now, we assume that the receivers and
specializers are all classes; the generalization to interfaces is
presented below. The algorithm checks several cases:

• If (C1,...,Cn) = (D1,...,Dn), then the two methods are duplicates,
and an ambiguity error is reported.

• Otherwise, if each Ci is equal to or a subclass of the
corresponding Di, or vice versa, then one method overrides the
other, and the methods are not ambiguous.

• Otherwise, if for each i, Ci and Di are related, meaning that
one is equal to or a subclass of the other, then the two methods
may be ambiguous, because they are applicable to overlapping
sets of argument tuples. This overlap is succinctly
characterized by their intersection tuple
(int(C1,D1),...,int(Cn,Dn)), where int(Ci,Di) returns whichever
of Ci or Di subclasses from the other. The methods’ overlap is
not a problem as long as there exists a third method whose
receiver and argument specializers form exactly the
intersection tuple: the third method resolves the ambiguity of
the first two. If such a method has been loaded, then the
original two methods are unambiguous, and otherwise an
ambiguity error is reported.

• Otherwise, the methods are disjoint: they are applicable to
disjoint sets of argument tuples, and so they are unambiguous.

As a simple example, consider the area methods in Figure 3. All
three pairs of methods pass the above check. The methods for
Rectangle and Circle are disjoint from one another, because
neither receiver is a subclass of the other. Further, each of these
methods overrides the method for Shape. To illustrate
intersection tuples, suppose that the Shape class of Figure 2 also
contained a method for drawing black-and-white printers:

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Shape on a b&w printer ... }

The first draw method of Rectangle in Figure 7 would overlap
with the above method, and the intersection tuple would be
(Rectangle, BWPrinter). Without the second draw method
in Rectangle, whose receiver and argument specializer form
exactly the intersection tuple, the other two methods would cause
an ambiguity error to occur if draw were invoked on the
intersection tuple.

As discussed in Section 2, an operation must undergo load-time
ambiguity checking if either the operation has glue methods or has
methods that specialize on interfaces. We discuss each situation in
turn.

3.3.4.1 Glue Methods

The loader records the set of methods that have been loaded for
each operation. Then, just before loadReachableMethods
loads the dispatcher class for a method belonging to an external
operation, the new method is checked for ambiguity against each
of the previously loaded methods with which it may be ambiguous,
using the algorithm described above. It would be conservative for
the loader to check the new method for ambiguity against each of
the previously loaded methods on the same operation. However,
there is no need to recheck a pair of methods for ambiguity if their
unambiguity was already established at modular compile time by
the RMJ compiler. Any pair of methods that were simultaneously
visible by the RMJ compiler during its compile-time checks on
some file need not be rechecked at load time. Therefore, the only



load-time checking that is required is between pairs of methods
where one method is a glue method and the other method is either
another glue method or a method written inside a class (such as the
area method in Figure 4).

To exploit this observation, each external operation’s list of
previously loaded methods is partitioned into three separate lists,
based on whether the method came from the source file
introducing the external operation (a base method), the source file
of a class that adds a method to the external operation (a subclass
method), or a glue method source file (a glue method); the
method’s annotation indicates which category the method is in.
Whenever a glue method is loaded by
loadReachableMethods, it is checked for ambiguity with
those methods on the glue and subclass lists. Whenever a subclass
method is loaded, it is checked for ambiguity with those methods
on the glue list. No other combinations need load-time checking.
For example, when each of the methods in Figure 3 is loaded, no
ambiguity checking is performed. When the glue method in Figure
6 is loaded, it is checked for ambiguity against any subclass
methods or other glue methods, but it is not checked against the
base methods from Figure 3, as that checking already occurred at
compile time.

3.3.4.2 Interface Specializers

Each operation containing methods that specialize on interfaces
must be checked for unambiguity at load-time. To do so, we first
generalize the routine described above for checking pairwise
ambiguity of methods, to properly handle multiple inheritance. We
now take into account the fact that two interfaces (or one interface
and one class) can have a common subclass without themselves
being related. Only the second-to-last case in the earlier routine
needs to be modified. First, the case should apply when for each i,
either Ci and Di are related, as before, or there exists a loaded
concrete class that inherits from both Ci and Di. In the latter case,
we define int(Ci,Di) to be the set of loaded concrete classes that
inherit from both Ci and Di. Finally, there can now be multiple
intersection tuples, formed by taking the n-way cartesian product
of the int(Ci,Di) sets, each of which requires a loaded resolving
method.

The revised routine depends both on the set of currently loaded
methods (in order to find resolving methods) and on the set of
currently loaded concrete classes (in order to compute int(Ci,Di)).
Similarly to incremental completeness checking, the loader checks
unambiguity of an operation containing methods with interface
specializers incrementally as each of these sets grows. If the
operation is external, unambiguity of a new method with respect to
previously loaded methods is checked by
loadReachableMethods, before the new method is loaded. If
the operation is internal, unambiguity of a new method is checked
when the method’s annotation is found by registerClass.
Finally, the custom class loader maintains a mapping from each
loaded interface to the loaded methods that have that interface as
its receiver or as an argument specializer; this mapping is updated
by registerClass as classes are loaded. When a concrete
class that implements an interface is loaded and registered, each
method on the interface’s list is retrieved and rechecked for
ambiguity with respect to the other loaded methods of its
operation.

As with the ambiguity checking of operations containing glue
methods, we can optimize which pairs of methods need to be
checked for operations containing interface-specializing methods.
Only pairs of methods where at least one has an interface
specializer need to be checked for ambiguity by the RMJ loader.

All other pairs are guaranteed to be unambiguous because of the
RMJ compiler’s modular checks. This optimization still requires
that a method specializing on an interface be checked against all
previously loaded methods, including base methods. Although
each method was checked against the base methods modularly by
the RMJ compiler, the compile-time checks may have missed
ambiguities caused by unseen concrete subclasses of interfaces.

3.3.4.3 Run-time Ambiguity Checking

As with completeness errors, to give programmers increased
flexibility, ambiguity errors are treated by our RMJ class loader as
non-fatal warnings, and the program is allowed to continue.
Whenever a load-time ambiguity error is reported for some
operation, a special ambiguity dispatcher class, whose apply
method throws a RuntimeException, is instantiated and
prepended to the operation’s dispatcher list. If the ambiguity is
caused by duplicate methods, then the ambiguity dispatcher’s
apply method has the same receiver and argument specializers as
each of the duplicates. If the ambiguity is caused by the lack of a
resolving method for an intersection tuple, then the ambiguity
dispatcher’s apply method has the same receiver and argument
specializers as the intersection tuple. The ambiguity dispatchers
ensure that an exception will be thrown whenever a run-time
ambiguity occurs. This design only works for external operations;
if the load-time ambiguity error for an internal operation is ignored
by the programmer and the ambiguity is encountered at run time,
one of the ambiguously defined methods will be invoked
arbitrarily.

3.4 RMJ Preloader

When developing an application in RMJ, the programmer may
wish to exploit expressiveness that cannot be checked purely
modularly, at the cost of taking on the responsibility of avoiding
load-time incompletenesses and ambiguities. The RMJ class
loader checks for these problems as the program is run on some
input. It would also be useful to know whether or not a program
can incur load-time errors at all, for any possible input. For
example, a developer of shrink-wrapped software might wish to
verify, once and for all, that no load-time errors can occur for a
program. As another example, a programmer integrating two
libraries may wish to find places where those libraries require glue
in order to avoid load-time errors.

To assist in this kind of checking, we have developed a preloader
tool. The preloader is invoked like the custom class loader, except
that no arguments are given:

% java -Drmj.glue=<glue> RMJPreLoader
<Main>

The preloader starts by registering all the glue listed in the
rmj.glue property, just as RMJClassLoader does. The
preloader then exhaustively explores all classes statically
referenced by the <Main> class or some other referenced class,
transitively, ignoring the application’s actual flow of control. The
preloader performs all the RMJ load-time checks as it visits each
class. The preloader does not visit classes loaded only through
reflective mechanisms such as Class.forName. Many
applications only reference classes statically, and most others only
rarely reference classes through reflection, so this limitation should
not greatly hinder the preloader’s effectiveness at finding errors. It
would be straightforward to extend the preloader to accept a list of
dynamically reachable classes to visit in addition to the statically
reachable ones.



Even though classes may be visited by the preloader in a different
order than in a real execution, and more classes may be visited by
the preloader than in a real execution, the preloader is guaranteed
to discover all potential load-time hazards of a real execution, with
the one caveat about reflection described above. If the preloader
reports a hazard, then the programmer is given early warning about
a situation needing attention. If the preloader reports no hazards,
then load-time errors will not occur when the program is run.

4. EXPERIENCE

We have developed an implementation of RMJ. We extended the
MultiJava compiler to handle the additional RMJ language
features and code generation strategy, and we implemented
RMJClassLoader and RMJPreloader as described in the
previous section. Our implementation is freely available for
download as a part of the regular MultiJava system [36]. The next
subsection describes a case study using our RMJ implementation,
and the second subsection reports on some performance
experiments from this study.

4.1 A Case Study

We have experimented with rewriting parts of Barat [8], a Java
front-end written by others. Barat builds an abstract syntax tree
(AST) from a set of Java source files, which can then be used to
perform various static analyses. Barat is itself written in Java, and
the AST nodes are represented by a class hierarchy, with root
interface Node. Barat uses the visitor design pattern in order for
clients to perform their desired analyses without modifying the
node classes directly. To write an analysis, clients create a new
class implementing the Visitor interface, which has a visitN
method for each node named N. To run the analysis, clients invoke
an AST node’s accept method, passing an instance of the new
visitor.

Barat comes with several predefined visitors. One of them, the
OutputVisitor, outputs a source-code representation of the
given AST nodes. We re-implemented this functionality using
RMJ, by writing an external operation, output, on the AST node
classes. As opposed to the visitor pattern, which requires “hooks”
(the accept method) inside the node classes, the implementer of
Barat did not need to plan ahead to allow us to implement our
revised output operation. Further, it was natural to define the
output operation to take parameters, for example the current
indentation and the stream to which the output should be directed.
Because the OutputVisitor has to conform to the Visitor
interface, these parameters must instead be simulated via fields in
the OutputVisitor class. Finally, clients can invoke the
output operation via ordinary message sending syntax, as if it
were defined in the original node classes.

Those benefits would be obtained via an output external
operation in regular MultiJava, but the output operation also
benefits from the new features of RMJ. In MultiJava, the output
operation would be forced to contain a default implementation for
the root interface Node, to handle any unseen concrete subclasses.
However, there is no reasonable default behavior in this case, so
the default method would be forced to simply throw a run-time
exception. In RMJ, output contains an abstract method for
Node. During modular static typechecking, a warning is signaled,
and any visible subclasses are checked for completeness. Our
custom class loader then checks at load time to ensure that all
subclasses of Node do indeed have an appropriate implementation
of output.

The output operation also naturally employs RMJ’s glue
methods. One way Barat has been used is to experiment with
extensions to Java (e.g. [2]). Clients add their own subclasses of
Node to represent the new syntax and update the Barat parser
appropriately. Unfortunately, the client extensions break all
existing visitors, which do not know how to visit the new nodes. If
clients wish to use the OutputVisitor, it must first be modified
in place to contain methods for visiting the new nodes, and then
retypechecked and recompiled. MultiJava would allow each new
node to contain an overriding output method as a regular
internal method. However, if the output operation were not
known when the new nodes were written, MultiJava would require
modification of existing code to later add output methods for the
new nodes.

In RMJ, the output operation can be updated to handle the new
nodes, without requiring source access to the original output
external methods or to the new nodes. We simply create a new file
containing glue methods that provide output functionality for
the new nodes. As an example, we created a version of the
output operation that does not support Barat’s Cast and
Instanceof nodes, representing Java’s run-time cast and
instanceof test, respectively. Therefore, the output
operation is only well-defined on the subset of Java programs that
do not perform explicit run-time type manipulation. To handle the
“extension” allowing casts and instanceof tests, we then created
two output glue methods handling the new nodes, without
modifying the original output code or the new nodes. Clients of
output whose Java programs employ run-time type manipulation
add the glue files to their rmj.glue property to make the two
independent extensions to the Node hierarchy (the output
operation and the new node subclasses) work together.

A final use of RMJ’s expressiveness is required by Barat’s use of
interfaces as the sole external view of its functionality. Barat
implements its AST nodes using two parallel hierarchies: as a set
of interfaces, and as an associated set of classes implementing
those interfaces. The intent is that clients never interact directly
with the implementation classes, but only with the interfaces.
Node, Cast, Instanceof, and all other Node kinds are public
Java interfaces; internal concrete classes like CastImpl and
InstanceofImpl implement these public interfaces. RMJ
allows the various output methods to be defined directly on the
public interfaces and ensures that there are no multiple-inheritance
ambiguities at load time.

One benefit of the original visitor implementation is that it can be
inherited for use by other visitors. For example, a
LoggingOutputVisitor could subclass from
OutputVisitor and override a few of the visitN methods to
print some extra logging information in those cases, while
inheriting the rest of the visitN methods. Writing a logging
external operation in RMJ that forwards to our output operation
would not work, since recursive calls would all go to output
instead of back to the logging operation.

If inheritance of visitors is desired, an alternative strategy in RMJ
is to implement the OutputVisitor as an Output class that
contains an operation accepting the node being visited as an
argument, as shown in the top of Figure 11. When the apply
operation is invoked, multimethod dispatch is used to provide the
appropriate implementation for each node. As shown in the middle
of the figure, the Output class can then be extended by a
LoggingOutput class, analogous to the
LoggingOutputVisitor. The LoggingOutput class has
an overriding apply multimethod for each kind of node for which



logging is desired, while inheriting the rest of its functionality
from Output. Unlike the visitor-based approach, the Output
class using multimethods requires no advance planning from the
implementer of the node hierarchy. Additionally, apply
multimethods within the Output class can inherit from one
another, unlike the various visitN methods of the
OutputVisitor class. Finally, an external operation named
output can be written as a wrapper around a call to Output’s
apply method, as shown in the bottom of Figure 11, so that
clients can use their normal calling sequence to invoke the
operation.

4.2 Performance Experiments

RMJ adds overhead to perform its load-time checking and run-
time invocation of glue methods. To gauge RMJ’s performance
cost, we studied four different versions of the output functionality
described above. The first version is the original
OutputVisitor class provided with Barat. The second is an
external output operation using regular MultiJava. Because of
MultiJava’s restrictions for modular safety, this version includes a
concrete default implementation for Node. In addition, all of the
output methods are declared in a single file, and they are defined

directly on the internal classes (e.g., CastImpl and
InstanceofImpl) rather than the external interfaces (e.g.,
Cast and Instanceof). The third version is an RMJ version of
the external output operation, which uses an abstract method for
Node and uses glue methods for the output methods for casts
and instanceof tests, but the output methods are still defined
on the internal classes. The fourth version is the “ideal” RMJ
version, which is like the third version except that the output
methods are defined on the external interfaces. The first two
versions can be run with either Java’s regular class loader or with
the RMJ class loader, but the third and fourth versions can only be
run using RMJ’s custom loader.

Table 1 presents the raw results of our performance experiments.
We invoked each version of the output functionality on two inputs:
a small input that’s a single Java source file 662 lines in length, and
a large input that’s 20 Java source files 7476 total lines in length.
Barat parses the file(s), creates the associated AST nodes, and then
invokes the output functionality (either the OutputVisitor or
the output operation) to print out the source-code representation
of the nodes. All reported times are the median value in seconds of
the user time of five runs, measured on a 500 MHz, Pentium III PC
with 128MB RAM running RedHat Linux 7.3 and Sun Java
SDK1.4.1.

Our experiments used three variants of the RMJ class loader. The
“full” RMJ loader is the one described in the previous section. The
“no-chk” and “no-chk no-glue” variants help identify RMJ’s load-
time costs. The “no-chk” variant is RMJ’s class loader with all
completeness and ambiguity checking disabled. The loader still
loads each glue method when it becomes reachable. The “no-chk
no-glue” variant is like “no-chk” but additionally does not load
glue; it simply emulates the ordinary Java class loader. This variant
can therefore not be used on versions 3 and 4 of the output
functionality, which require glue methods.

The “passive” overhead for using the RMJ class loader instead of
the regular Java class loader (the difference between columns a and
d for the first two versions of the output functionality) is 7% for the
small input and 7-8% for the larger input. The negligible difference
between the “full” and “no-chk” loaders for the first two versions
indicates that almost none of this overhead is due to the cost of
maintaining data structures for any potential completeness and
ambiguity checking. With the additional cost of loading glue as it
becomes reachable (the difference between “full” RMJ’s overhead
and “no-chk no-glue” RMJ’s overhead in the first two versions),
the overhead is 3-4% for the small input and 1-3% for the large
input. The rest of the passive overhead is simply the cost of using a
class loader other than Java’s default one, possibly because that

public class Output {

public void apply(Node@IfNode n) {
... code for outputing an if statement ... }

public void apply(Node@WhileNode n) {
... code for outputing a while statement ... }

...

}

public class LoggingOutput extends Output {

public void apply(Node@WhileNode n) {
... code for outputing and logging a while stmt ... }

...

}

public void Node.output() {

new Output().apply(this);

}

Figure 11: An alternative to visitors in RMJ

Table 1: Execution Times

version 1. Java OutputVisitor 2. MultiJava output on classes
3. RMJ output on

classes
4. RMJ output on

interfaces

loader
a. RMJ

full
b. RMJ
no-chk

c. RMJ
no-chk
no-glue

d. Java
a. RMJ

full
b. RMJ
no-chk

c. RMJ
no-chk
no-glue

d. Java
a. RMJ

full
b. RMJ
no-chk

a. RMJ
full

b. RMJ
no-chk

small test 7.7 7.7 7.4 7.2 8.1 8.2 7.9 7.6 8.7 8.6 8.8 8.2

large test 19.6 19.5 19.1 18.4 20.5 20.8 20.3 18.9 20.5 20.5 21.7 20.6



loader uses native methods to load classes. Because the overhead
of RMJ’s class loader is incurred only when a class is loaded, the
impact of the load-time costs on performance becomes less
important as programs run longer.

The cost of abstract external methods and glue methods, without
external methods on interfaces, is illustrated by the difference
between columns 2a and 3a in Table 1. Overhead for the small
input is 7%, and there is no noticeable overhead for the large input.
The negligible difference between the “full” and “no-chk”
columns in version 2 and in version 3 indicates that the incurred
overhead is largely caused by the run-time cost of having each
external method reside in its own dispatcher class.

To corroborate this observation, we ran versions 2 and 3 of the
output functionality on test cases consisting of 8, 16, 24, and 36
copies of the small input file, as shown in Table 2. These test cases
isolate RMJ’s run-time cost, since the RMJ class loader’s work is
identical in each case. Our earlier observation is supported by the
results: as the number of copies increases, version 3 continues to
take 6% longer than version 2. Therefore, the overhead is incurred
throughout execution. A more efficient compilation strategy for
external operations with glue methods would reduce this overhead
and is a key area for future work, as described in Section 6.

The cost of external methods on interfaces is illustrated by the
difference between columns 3a and 4a in Table 1. The overhead is
1% for the small input and 6% for the large input. The overhead is
largely the load-time cost of performing ambiguity checking in the
presence of interfaces. This is illustrated by the fact that the
difference between versions 3 and 4 disappears in the “no-chk”
variant. It is also corroborated by Table 2, in which the absolute
cost of version 4 over version 3 remains roughly constant (between
0.3 and 0.5 seconds) as the number of copies increases.

5. PREVIOUS WORK
The inspiration for the features in MultiJava and RMJ comes from
previous languages based on multimethods, including CLOS [46,
42], Dylan [44], and Cecil [13, 14]. These languages support
arbitrary multimethods and external methods (indeed, all methods
are written external to their classes). However, CLOS and Dylan
are dynamically typed, and Cecil requires global typechecking to

ensure type safety of message sends [31]. Vortex [19], the compiler
for Cecil (and other languages), employs a global compilation
strategy that makes heavy use of whole-program optimization.

Parasitic methods [9] and Half & Half [6] are both extensions to
Java that support encapsulated multimethods [12], which are akin
to internal multimethods in RMJ; neither language supports
external (multi)methods. Like RMJ, both languages support the
use of interfaces as specializers in multimethods. Because it is
difficult to modularly check multimethod ambiguity in the
presence of interface specializers, parasitic methods modify the
multimethod dispatch semantics so that ambiguities cannot exist,
employing the textual order of methods to break ties. Half & Half
resolves the problem by performing ambiguity checking on entire
packages at a time, rather than on individual classes. For such
package-level checking to be safe, Half & Half must also limit the
visibility of some interfaces to their associated packages, thereby
disallowing outside clients from employing them as specializers.
In contrast, RMJ ensures that operations are unambiguous without
either modifying the multimethod dispatching semantics or
imposing restrictions on the usage of interface specializers.
Instead, RMJ requires incremental ambiguity checking at class
load time.

Recently several languages have emerged that provide direct
support for separation of concerns. For example, AspectJ [26] is an
aspect-oriented extension to Java, whose aspects can extend
existing classes in powerful ways. Hyper/J [41] is a subject-
oriented extension to Java that provides hyperslices, which are
fine-grained modular units that are composed to form classes. Both
languages support external methods; for example, this ability
corresponds to AspectJ’s introduction methods. The languages
additionally support many more flexible extensibility mechanisms
than RMJ. For example, AspectJ’s before and after methods
provide ways of augmenting existing methods externally. To cope
with this level of expressiveness, these languages employ non-
modular typechecking and compilation strategies. For example,
AspectJ’s compiler weaves the aspects into their associated
classes; only when all aspects that can possibly affect a class are
available for weaving can that class’s typechecking and
compilation be completed.

Binary Component Adaptation (BCA) [25] allows programmers to
define adaptation specifications for their classes, which can
include the addition of new methods, thereby supporting external
methods. Adaptation specifications can also include modifications
not supported by RMJ, like the declaration that an existing class
implements a new interface. The typechecking and compilation
strategy is similar to the aspect-weaving approach described
above, requiring access to all adaptation specifications that can
affect a given class in order to typecheck and compile the class.
The authors describe an on-line implementation of BCA, whereby
the weaving is performed dynamically using a specialized class
loader.

Jiazzi [33] is an extension to Java that provides components with a
powerful external linking semantics, including recursive linking.
The authors show how to use these features to encode an open
class pattern, whereby a component imports a class and exports a
version of that class modified to contain a new method or field.
Open classes in RMJ (and MultiJava) allow two clients of a class
to augment the class in independent ways, without having to be
aware of one another. In contrast, in Jiazzi there must be a single
component that integrates all augmentations, to create the final
version of the class. Component linking in Jiazzi is performed
statically, so it is not possible to dynamically add new methods to

Table 2: RMJ’s Run-time Cost

version
2. MultiJava
output on

classes

3. RMJ
output on

classes

4. RMJ
output on
interfaces

loader a. RMJ full a. RMJ full a. RMJ full

small test
x8 9.8 10.4 10.8

small test
x16 11.4 12.1 12.6

small test
x24 12.9 13.7 14.2

small test
x36 15.4 16.3 16.6



existing classes. Dynamic augmentation is possible in RMJ, since
it is integrated with Java’s regular dynamic loading process.

The visitor design pattern [21] is a programming idiom that allows
new operations to be added to existing classes without modifying
existing code. However, the visitor pattern has several drawbacks
that are not shared by external methods in RMJ, as discussed in
Section 4.1. Most importantly, the ability to add new operations to
an existing class comes at the cost of losing the ordinary object-
oriented ability to add new subclasses, since each visitor must be
modified in place to handle a new subclass. Several researchers
have designed extended versions of the visitor pattern that resolve
this and other problems [28, 43, 32, 37, 48, 49, 23]. However, these
extensions require dynamic type casts or run-time reflection, and
they often further complicate the already-complex visitor pattern.

6. CONCLUSIONS AND FUTURE WORK
RMJ represents a new point in the design space balancing
extensibility against modular reasoning. It offers almost the full
power of external methods and multimethods while retaining all of
MultiJava’s modular typechecking guarantees. Many of the
extensibility idioms can be proven safe purely modularly,
independently of how a file’s classes and operations are used in
enclosing programs, and the remainder are proven safe
incrementally as each file is loaded. A preloader tool assists in
discovering load-time errors before run time. Programmers can
explicitly choose between expressiveness and early checking,
based on their software development needs and goals.

Unlike some related systems that also offer greater extensibility,
RMJ retains a modular approach to typechecking and compilation.
RMJ can check files separately and either guarantee them safe or
point out exactly those situations that programmers must be
concerned about to avoid load-time errors. Current systems based
on global or large-scale translation or weaving to combine separate
concerns do not provide these kinds of early checking.

Much of the challenge in developing RMJ was in designing the
interplay between compile-time and load-time checking and code
generation, to keep load-time overhead small. RMJ’s
implementation strategy performs all code generation at compile
time in a modular, per-file fashion. It also attempts to perform as
much checking modularly as it can. For those checks that lead to
warning messages, additional annotations are generated, directing
RMJ class loader’s efforts to those parts of the program that need
load-time checking. The loader maintains several data structures
that help it to perform the needed checks efficiently.

In future work, we plan to pursue several directions:

• We wish to gain experience with the strengths and limitations
of RMJ by using the language, and convincing others to use it,
in the implementation of several large systems. Others have
already been using MultiJava in several domains, and this
experience was one motivation for designing RMJ.

• We wish to explore supporting additional extensibility while
retaining modular or load-time checking. It would be useful to
declare that a class implements an interface outside of the class
(for example, along with adding external operations to the
class). The ability to add static methods and static fields to a
class from the outside would be simple but useful extensions.
The ability to add instance fields to a class from the outside
would also be useful but is challenging to implement
efficiently. We also wish to investigate how we might
incorporate some of the additional extensibility of systems like
AspectJ and Hyper/J, particularly the ability to extend

individual methods with additional before and after behavior
from the outside, while retaining modular checking.

• We wish to investigate including binary code generation or
rewriting as part of custom class loading. For one, this would
allow us to dynamically generate more efficient dispatching
methods for external operations. When a new dispatcher class
is loaded, any previous dispatcher method would be
invalidated and dropped. The next time the external operation
is invoked, a customized dispatcher method based on the list of
currently loaded dispatchers would be dynamically generated,
loaded, and invoked. Previous efficient multimethod
dispatching algorithms can be used when generating the
dispatcher based on the current snapshot of loaded methods
[16]. Binary code generation could also be used to allow
additional kinds of extensibility that are challenging to
implement modularly, including the ability to write glue
methods belonging to regular internal operations.
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